at -20 °C for 1 h, 2-bromophenol (81 μ L, 0.66 mmol) was injected over **2 min.** *All* the solids diaeolved **as** Boon **as** the addition was complete. **With** the cold bath left in place, the mixture was **allowed** to attain **room** temperature **(over ai. 1** h), and the solvents **were** then evaporated. Flash chromatugraphy of the residue over **silica** gel **(2 X 18** *cm)* using **12%** ether-hexane afforded crude **3,** which was further purified on a Chromatotron [circular plate *coated* with a **2-mm-thick** adsorbent **(silica** gel *60* **PFzar** containing **gypsum)].** Successive elution with **4%, 8%,** and **12%** etherhexane gave pure **3 (72** mg, **33%) as** a colorless oil: ET-IR (CHC1, cast) **1720, 1475, 1183** cm-'; 'H NMR (CDC13, **300** MHz) 6 **1.27 (t,** *J* = **7.0 Hz, 3** H), **1.63** (t, **J** = **3.8 Hz, 1** H), **1.82-2.03** (m, **3** H), **2.65-2.70** (m, **1 H), 4.13 (9, J** = **7.0** Hz, **2** H), **4.55-4.65** (m, **1** H), **6.72(brd,J=10.2Hz,lH),6.18(dm,J=10.2Hz,lH),6.82-6.93** $(m, 2 H)$, 7.20-7.30 $(m, 1 H)$, 7.50-7.57 $(m, 1 H)$; ¹³C NMR $(CDCl₃$, **76.5 Wz) 8 14.26, 19.09, 20.39,24.60,27.09,60.71,71.32, 113.63, 115.77,122.58,126.50,127.94,128.36,133.68,154.31,172.52;** exact **maea,** *m/t calcd* for C1&11,7pBrog **336.0362,** found **336.0350.** Anal. **H, 4.91; 0, 14.28.** *calcd* for C,&i,Be C, **56.98;** H, **5.08, 0,14.23.** Found: C, **56.M**

Ethyl $(3\alpha, 4a\alpha, 9b\alpha) \cdot (1) - (3, 4, 4a, 9b$ -Tetrahydrodibenzofuran-3-yl)acetate (4). Et_3B (1 M in hexane, 0.22 mL, 0.22 mmol) and then Bu₃SnH (0.231 mL, 0.878 mmol) were added to a stirred solution of **3 (140** mg, **0.439** mmol) in dry hexanes **(18 mL). The mixture** was stirred at 35 **OC** for **24** h. The solvent was then evaporated and the residue was diluted with ether **(6** mL) **and** *stirred* with **an** ex- of KF in water. After **1** h, the mixture was **diluted** with ether **(20** mL) and the organic layer was washed with water **(6** mL), dried *(MgSO,),* and evaporated. Flash chromatography of the residue over silica gel $(1.5 \times 12 \text{ cm})$ using **610%** EtOAc-hexane afforded **4 (71** mg, **67%)** and an unidentified side product (12 mg) . Compound 4: FT-IR $(CHCl_8 \text{ cast})$ **2860,1731,1597,1477,1230** cm-'; **'H NMR** (CDCla, **300** *MHZ)* **6 1.28** (t, J ⁼**7.2** Hz, **3 H), 1.58-1.78** (m, **2** H), **2.31-2.41** [m, including a d at **6 2.35,** *(J* = **7.2** Hz), **3 HI, 2.72-2.92 (m, 1 H), 3.79** (br d, **7.2** Hz, **1 H), 4.17 (9, J** = **7.2** Hz, **2** H), **5.06** (m, **1 H), 5.72** (br **s, 2** H), **6.77-6.90** (m, **2** H), **7.06-7.12** (m, **2** H); '% *NMR* **109.94,120.58,124.51,127.19,128.28,130.78,130.86,159.37,172.12;** exact mass, m/z calcd for $C_{16}H_{18}O_3$ 258.1255, found 258.1252. (CDCl3,75.5 *MHz)* **6 14.30,26.90,31.49,40.25,41.06,60.45,80.70,**

Acknowledgment of financial support is made to the Natural Sciences and Engineering Research Council of Canada, to Merck Frosst Canada, and to the University of Alberta. **S.D.** holds a **1967** Science and Engineering Scholarship (N.S.E.R.C.), a Steinhauer Award of Distinction (Province of Alberta), and scholarships from the F.C.A.R. (Quebec), the A.H.F.M.R. (Alberta), and the University of Alberta. We thank Dr. B. D. Santarsiero (Universitty of Alberta) for the X-ray structure determination.

Registry **NO. 2,135189-62-7; 3,135145-37-8; 4,135145-38-9; 5, 21449-12-7; 6, 135145-39-0; 7, 135145-40-3; 8, 85696-74-8; 9, 135145-41-4; 10, 135145-42-5; 11, 135145-43-6; 12,135145-44-7; 13,135145-45-8; 14,135145-46-9; 15,13514547-0; 16,135189-63-8; 17, 135145-48-1; 18, 135145-49-2;** 2-bromophenol, **95-56-7.**

Supplementary Material Available: **'H** NMR spectra of **2,4, 13, 15, 16,** and **18 (6** pages). Ordering information is given on any current masthead page.

NiCl,(dppe)-Catalyzed Geminal Dialkylation of Dithioacetals and Trimethylation of Ortho Thioesters'

Yih-Ling Tzeng,²ª Ping-Fan Yang,^{2b} Nai-Wen Mei,^{2a} Tien-Min Yuan,^{2a} Chun-Chi Yu,^{2a} and Tien-Yau Luh*^{,2a–}'

Departments of Chemistry, National Taiwan University, Taipei, Taiwan 10764, Republic of China, and The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Received *February 19,* 1991

NiCl₂(dppe)-catalyzed cross-coupling of cinnamaldehyde dithioacetals gave the corresponding geminal dimethylation products in excellent yields. Allylic ortho thioesters afforded regioselectively the corresponding
trimethylation products. The reaction may occur via an 18-electron π -allyl intermediate, which undergoes fa reductive elimination to afford the geminal dimethylation product. Benzylic dithioacetals **having** an ortho amino group gave 2-isopropylanilines exclusively. The reaction of benzylic dithioacetals with EtMgBr under the same conditions yielded geminal diethylation products.

We recently reported a series of new nickel-catalyzed olefination reactions of dithioacetals for the synthesis of substituted styrenes, allylsilanes, vinylsilanes, silylated butadienes, and other substituted butadienes.³ These reactions involve a successive coupling process and a β elimination step (eq 1). Theoretically, the two carbon-

$$
R \longrightarrow \begin{array}{c}\n\text{Mém} \\
\text{Mém} \\
\text{NicU}_{2}\text{(PPF}_{13})_{2}^{\text{Mém}} & \text{Mém} \\
\text{Mém}
$$

sulfur bonds in dithioacetals can both be replaced by carbon-carbon bonds, hence producing gem-dialkyl **systems.** In this case, the catalytic cycle would consist of two sequential reductive elimination steps. The selectivity between geminal dialkylation versus olefination may depend on the nature of the catalyst. It is generally believed that a saturated 18-electron organometallic species would favor reductive elimination over β -elimination, and the

⁽¹⁾ Tramition Metal Promoted Reactions. 38.

⁽²⁾ (a) National Taiwan University. (b) The Chinese University of Hong Kong. (c) To whom correspondence should be addressed at Na-

tional Taiwan University.

(3) (a) Ni, Z.-J.; Luh, T.-Y. J. Chem. Soc., Chem. Commun. 1987, 1515.

(b) Ni, Z.-J.; Luh, T.-Y. J. Chem. Soc., Chem. Commun. 1988, 1011. (c)

Ni, Z.-J.; Luh, T.-Y. J. Org. Chem. 1988, 53, 2129. **Organomctallicr 1990,9,3019. (h) Ni, Z.-J.; Mei, N.-W.; Shi, X.; Tzeng, Y.-L.; Wang, M. C.; Luh, T.-Y.** *J.* **Org.** *Chem.* **1991,56,4035.**

Table I. Geminal Dimethylation of Allylic Dithioacetal

entry	substr	R	R	catalyst ^a	% yield	ratio 2:3
	la	Ph	H	Α	87	69:31
2	la	Ph	н	в	93	100:0
3	1d	$4-MeC_6H_4$	н	B	98	100:0
4	1e	$3-MeOC_6H_4$	н	в	95	100:0
5	1f	2-naphthyl	н	B	95	100:0
6	lg	$2-MeOC_6H_4$	н	в	92	96:4
7	1b	Ph	Me	A	91	57:43
8	1b	Ph	Me	в	92	77:23
9	1c	Ph	Et	A	71	31:69
10	1c	Ph	Et	B	96	68:32

^a A, NiCl₂(PPh₃)₂; B, NiCl₂(dppe).

reverse would be true for an unsaturated one.⁴ Indeed, Kurosawa and co-workers recently found that the 18 electron **(q3-allyl-q1-aryl)nickel(II)** complexes rapidly undergo reductive elimination.⁵ It is known that the reduction of carbon-sulfur bonds occurs in the $NiCl₂$ - $(PPh₃)₂$ -catalyzed reactions⁶ of a secondary Grignard reagent with organosulfur compounds,⁷ while couplings predominante when the nickel catalyst containing bidendate ligands such as dppp (Ph₂PCH₂CH₂CH₂PPh₂) is employed as the catalyst.⁸ In a preliminary communication, we reported that reductive elimination is a facile step in the catalytic reaction when an 18-electron $(\eta^3$ -allyl)organonickel intermediate is involved.⁹ We now describe the details of this reaction.

Results and Discussion

Geminal Dimethylation of Allylic Dithioacetals. Geminal dimethylation of a carbonyl group or its equivalent can be achieved by a number of methods.¹⁰ However, these procedures are not applicable to α, β -unsaturated carbonyl compounds because a significant amount of the 1,3-dimethylation product is obtained in addition to the expected 1,1-dimethylation product.¹⁰ We have previously shown that the sulfur moiety in allylic dithioacetals can regioselectively direct nickel-catalyzed cross-coupling with a Grignard reagent leading to an efficient synthesis of

(6) (a) Okamura, H.; Miura, M.; Takei, H. *Tetrrahedron Lett.* **1979, 20,43.** (b) Wenkert, E.; Ferreira, T. W.; Michelotti, E. L. J. *Chem. Soc., Chem. Commun.* **1979,637.**

(7) (a) Troat, B. M.; Omstein, P. L. *Tetrahedron Lett.* **1981,22,3463.** (b) Wenkert, **E.;** Hanna, J. M., Jr.; Leftin, M. H.; Michelotti, E. L.; Potts, K. T.; Usifer, D. J. *Org. Chem.* **1985**, 50, 1125. *(c) Capet, M.; Cuvigny, T.; Hervé du Penhoat, C.; Julia, M.; Loomis, <i>G. Tetrahedron Lett.* **1987**, *28,* **6273.** (d) Trost, B. M.; Lavoie **A.** C. J. *Am.* Chem. *SOC.* **1983,** *205,* **5075.** (e) Troet, B. M.; Ornetein, P. L. J. *Org. Chem.* **1982 47, 748. (f)** Shen, G.-Y.; Tapia, R.; Okamura, W. H. *J. Am. Chem. SOC.* **1987,109,** 7499. (g) Fabre, J.-L.; Julia, M. *Tetrahedron Lett.* 1983, 24, 4311. (h)
Cuvigny, T.; Fabre, J.-L.; Hervé du Penhoat, C.; Julia, M. *Tetrahedron*
Lett. 1983, 24, 4319. (i) Fabre, J.-L.; Julia, M.; Verpeaux, J.-L. *Bull. S*

(8) Wenkert, E.; Ferreira, T. W. J. *Chem. SOC., Chem. Commun.* **1982, 840.**

Table 11. NiC12(dppe)-Catalymd Trimethylation of Allylic Ortho Thioesters

entry	compd	R	R٬	% yield	ratio 7:8
11	6a	Ph	H	74	100:0
12	6b	$2 \text{-} \text{MeOC}_6\text{H}_4$	н	67	100:0
13	6c	$4-MeOCaHa$	н	54	100:0
14	6d	$4 \cdot \text{MeC}_6\text{H}_4$	H	63	100:0
15	6e	2-naphthyl	н	59	100:0
16	6f	Ph	Me	51	72:28
17	6g	Ph	Et	64	58:42

1-silylbutadienes. $3d, f$ Presumably, the coordination of **sulfur** to nickel causes regioselective reductive elimination leading to the formation of a carbon-carbon bond. $3d, f$ Based on this conjecture and the work by Kurosawa⁵ and by Felkin, $¹¹$ we felt that geminal dimethylation could be</sup> executed under the appropriate conditions. Therefore, a solution of cinnamaldehyde dithioacetal (la) and **4** equiv of MeMgI in the presence of 3 mol % of $\mathrm{NiCl}_2(\mathrm{PPh}_3)_{2}$ in ether-benzene was heated under reflux for 12 h to give a mixture of geminal dimethylation product **2a** and butadiene 3a (entry 1, Table I). These results constitute the first example of regioselective geminal dimethylation of α , β -unsaturated carbonyl equivalents.

When NiCl,(dppe) was used **as** the catalyst, cinnamaldehyde dithioacetals la-d gave **2a-d** in excellent yields as the sole products (entries **2-5).** Other bidendate phosphine ligands such **as** dppp or dppb behaved similarly. The chemoselectivity was **also** improved substantially for substrates having a substituent at $C-2$ when $\text{NiCl}_2(\text{dppe})$ was employed as the catalyst in comparison with those using $\text{NiCl}_2(\text{PPh}_3)_2$ (entries 7-10). The results are summarized in Table I.

The reaction may occur via a similar pathway **as** proposed earlier,³ proceeding via π -allyl intermediates 4 and **5.** The involvement of an 18-electron π -allyl intermediate

probably enhances the reductive elimination process that leads to the facile formation of the second carbon-carbon bond. Due to the directive effect of the concatenated thiolato anion **4,** the introduction of the first methyl group at the C-1 position is expected. The regiospecific introduction of the second methyl group may be controlled by steric factors, since C-1 in **5** is less hindered than C-3. Conjugative preferences are known in a number of regioselective nickel-catalyzed cross-coupling reactions of aryl-substituted allylic substrates, 11 and if this effect is significant, it may further enhance the regioselectivity of the geminal dimethylation reaction of allylic dithioacetals **1.**

Trimethylation of Allylic Ortho Thioesters. An ortho thioester has three carbon-sulfur bonds that could in principle undergo cross-coupling to give three new carbon-carbon bonds. When aryl-substituted allylic ortho thioesters **6** were employed, two trimethylation products **(7** and **8)** might be expected (eq **2).** Compound **7** may be favored by steric factors, while **8** may be facilitated by the conjugative preference.¹¹

⁽⁴⁾ Collman, J. P.; Hegedus, L. **S.;** Norton, J. R.; Finke, R. *G. Principles and Applications of Orgonotransition Metal Chemistry;* Univer-

sity Science Books: Mill Valley, **1987;** Chapter **6. (5) (a)** Kuroeawe, **H.;** Ohnishi, H.; Emoto, M.; Kawasaki, **Y.;** Murai, S. J. *Am. Chem. SOC.* **1988,** *110,* **6272.** (b) Kurwwa, H.; Ohnishi, H.; Emoto, M.; Chatani, N.; Kawasaki, Y.; Murai, **S.;** Ikeda, I. *Organometallics* **1990, 9, 3038.**

⁽⁹⁾ Yang, P.-F.; Ni, Z.-J.; Luh, T.-Y. J. *Org. Chem.* **1989, 54, 2261. (10) (e)** Reetz, **M.** T.; Westermann, J.; Steinbach, R. *Angew.* Chem., *Int. Ed. Engl.* 1980, 19, 900. (b) Reetz, M. T.; Westermann, J.; Steinbach, R. J. Chem. Soc., Chem. Commun. 1981, 237. (c) Reetz, M. T.; West-
ermann, J.; Kyung, S.-H. Chem. Ber. 1985, 118, 1150. (d) Meisters, A.;
Mole, T. J. Chem. Soc., Chem. Commun. 1972, 595. (e) Meisters, A.;
Mole, T. Aust. J. *Appl. Chem.* **1983,55, 1733.** (h) Posner, *G.* H.; Brunelle, D. J. *Tetra-hedron Lett.* **1972, 239.** (i) Posner, *G.* H.; Brunelle, D. J. *Tetrahedron Lett.* **1973, 935.** (j) Clarembeau, **M.;** Krief, **A.** *Tetrahedron* Lett. **1986, 27, 1719** and **1723.**

⁽¹¹⁾ (a) Felkin, H.; Swierczewski, *G. Tetrahedron* **197S, 31,2375. (b)** Chuit, C.; Flekm, H.; Roussi, *G.* Swierczewski, *G.* **1.** J. *Organomet. Chem.* **1977, 127, 371.** (c) Buchwalter, B. L.; Burfitt, L. R.; Felkin, H.; Joly- Goudet, M.; Naemura, K.; Sdomon, M. F.; Wenkert, E.; Wovkulich, P. M. *J. Am.* Chem. *SOC.* **1978,** *ZOO,* **6455.** (d) We thank a referee who hae called our attention to Felkin's work.

Treatment of **6** with *5* equiv of MeMgI in the presence of 5 mol % of NiCl₂(dppe) in refluxing toluene gave 7 in satisfactory yields. The results are tabulated in Table II. When there is no substituent at the C-2 position, the reaction waa **regiapecific, giving 7** exclusively (entries 11-15). On the other hand, upon increasing the steric congestion at C-2, the reaction became less selective and a mixture of **7** and 8 was obtained (entries 16 and 17).

The regioselectivity of this reaction is interesting. The reaction of 6a with MeMgI using NiCl,(dppe) **as** the cat**alyst was** stopped **as** soon **as** reflux temperature was achieved, and 9 and 10a were obtained in addition to re-

6a and 9 occurs under these conditions.12 The isolation of loa indicated that the first carbon-carbon bond is formed at C-3. Such regioselectivity is somewhat striking. The directive effect of the dithiane moiety in the π -allyl intermediate 11 apparently behaves differently from that of the sulfurs in intermediate 4. Since the environment at C-3 is less hindered than that at C-1, the coupling process would thus occur at this less crowded site. Alternatively, it **has** been suggested that the regiochemistry of Grignard reagent-nickel π -allyl couplings leads preferentially to the more π -acidic olefin that can more efficiently coordinate to low valent nickel." Presumably, the olefin moiety in 10a may be a better ligand for low valent nickel than the alternative styrene moiety $10b$.¹¹ The presence of a substituent at C-2 would destabilize 11 and the next coupling step would become less selective, yielding a mixture of **7** and 8. Having shown that 10a is the first intermediate in the trimethylation of allylic ortho thioesters, it becomes evident that further coupling proceeds in a similar manner as those in vinylic sulfides.⁶

Geminal Dialkylation of Benzylic Dithioacetals. The extension of the geminal dimethylation to simple benzylic dithioacetals 12 has been unsuccessful. Under the usual conditions using NiCl₂(dppe) as the catalyst, styrenes 13 were obtained predominantly, if not exclusively.

However, the presence of **an** o-amino group in dithioacetal 14 changes the situation, with 2-isopropylanilines 15 being obtained **as** the sole product in **6670%** yields. Since the number of the valence electrons determines the relative rates of reductive elimination versus β -elimination,⁵ the

Table **111.** Nickel-Catalyzed **Geminal** Diethylation of Benzylic Dithioacetale

entry		substr	Ar	% yield of 16	
	18	13a	Ph	52	
	19	13b	$4 \cdot \text{MeC}_6H_4$	52	
	20	13c	2-thienyl	62	
	21	13d	1-naphthyl	59*	

a 17 was also obtained in 14% yield.

nitrogen atom in these substrates may provide two "extra" electrons via coordination to the nickel atom during the reaction. Hence, the rate of reductive elimination is enhanced. The *p*-amino derivative 12 $(Ar = 4$ -aminophenyl), **as** expected, afforded styrene 13 **(Ar** = 4-aminophenyl) in 60% yield. The 0-hydroxy group in the phenolic analogue, on the other hand, shows no neighboring group effect, the corresponding styrene being obtained.

When **EtMgBr** was employed in the cross-couplings with 12, geminal diethylated products 16 were obtained. **Rep**resentative results are tabulated in Table 111. When a sterically hindered substrate such **as** 13d was employed, β -hydride elimination from intermediate 18 becomes more competitive leading to the formation of 17 **as** a side product (entry 21).

It is noteworthy that geminal dialkylation other than dimethylation of carbonyl group or its equivalent cannot readily be achieved by conventional methods.¹⁰ The observations described above is the protype of this sort of reaction.

Experimental Section

General Procedure for the Geminal Dialkylation of Dithioacetal with the Grignard Reagent. To a solution of 1 (2.0 mmol) and the nickel catalyst (0.06-0.2 mmol) in benzene (8 mL) under N_2 was added the Grignard reagent (8.0 mmol in ether solution), and the mixture was refluxed for 12 h, quenched with water, and diluted with ether (30 mL). The organic layer was washed with aqueous NaOH (lo%, 10 mL) and water (20 mL **x** 3) before being dried anhydrous MgSO,. After filtration and evaporation of the solvent, the residue was purified by chroma-
tography on silica gel (hexane) to afford the desired product(s).

tography on silica gel (hexane) to afford the desired product(s). 3-Methyl-1-phenyl-1-butene (2a). Following the general procedure, the reaction of la (500 mg, 2.4 mmol), MeMgI **(5.0** mL of a 2 M solution in ether, 10.0 mmol), and $\text{NiCl}_2(\text{dppe})$ (38.6 mg, 0.07 mmol) gave $2a^{13}$ (324 mg, 93%): ¹H NMR (CDCl₃, 250 $M\text{Hz}$) δ 1.10 (d, $J = 7.0$ Hz, 6 H), 2.48 (m, 1 H), 6.20 (dd, $J =$ 16.0,6.6 **Hz,** 1 **HI,** 6.35 (d, *J* = 16.0 Hz, 1 H), 7.12-7.40 (m, 5 H); MS m/z (rel intensity) 146 (64), 131 (100), 115 (23), 91 (66).
In a similar manner, a mixture of 1a (300 mg, 1.4 mmol),

 $\text{NiCl}_2(\text{PPh}_3)_2$ (35.0 mg, 0.05 mmol), and MeMgI (4.2 mmol) in benzene (8 mL) **was** refluxed for 16 h to give 2a (118 mg, 60%) and 3a³ (47 mg, 27%), which exhibited identical spectroscopic properties as those of the authentic samples.

2,3-Dimethyl-l-phenyl-l-butene (2b) and 2-MethyI-lphenylbutadiene (3b). Following the general procedure, lb **(300** mg, 1.35 mmol) was allowed to react with MeMgI (2.6 mL 2 M solution in ether, 5.0 mmol) and NiCl₂(dppe) (38.6 mg, 0.07 mmol) in benzene (8 **mL)** to give **2b1'** (152 mg, 71%) and **3b16 (42** mg, 21%). 2b: ¹H NMR (CDCl₃, 250 MHz) δ 1.08 (d, $J = 6.7$ Hz,

⁽¹³⁾ Goering, H. L.; Seitz, E. P., Jr.; Tsang, C. C. *J. Org.* **Chem. 1981,** *46,* **5304.**

⁽¹⁴⁾ Miyaura, N.; Yangi, T.; Suzuki, A. Chem. Lett. 1979, 535.
(15) Padwa, A.; Nahm, T. C. S.; Kodrigues, A. J. *Am. Chem. So*c. 1982, *104,* **2865.**

6 H), 1.81 **(s,** 3 H), 2.41 (hept, J = 6.7 Hz, 1 H), 6.06 *(8,* 1 H), 7.11-7.28 (m, 5 H); MS *m/z* (re1 intensity) 160 (39), 145 (loo), 129 *(60),* 115 *(W),* 91 (37). 3b: 'H *NMFt* (CDCl,, *250 MHz)* 6 2.18 $(s, 3 H)$, 5.15 $(d, J = 10 Hz, 1 H)$, 5.26 $(d, J = 18.0 Hz, 1 H)$, 6.53 *(8,* 1 H), 6.58 (dd, J = 18, 10 Hz, 1 HI, 7.18-7.40 (m, 5 HI; MS *m/z* (rel intensity) 144 (65), 129 (100), 115 (21).

In a similar manner, the reaction of lb (500 mg, 2.3 mmol), MeMgI (5.0 mL 2 M solution in ether, 10.0 mmol), and NiCl₂- $(PPh₃)₂$ (80 mg, 0.1 mmol) in benzene gave 2b (191 mg, 52%) and 3b (129 mg, 39%).

3-Methyl-2-ethyl-1-phenyl-1-butene (2c) and 2-Ethyl-lphenylbutadiene (3c). Following the general procedure, the reaction of IC **(500** mg, 2.1 mmol), MeMgI (5.0 **mL** 2 M solution in ether, 10.0 mmol), and NiCl₂(dppe) (38.6 mg, 0.07 mmol) gave **2d6** (240 mg, 65%) and **3c1'** (103 *mg,* 31%). 2c: 'H *NMR* (CDCl,, 250 MHz) δ 1.05 (d, J = 6.7 Hz, 3 H), 1.13 (d, J = 6.8 Hz, 6 H), 2.27 (q, $J = 6.7$ Hz, 2 H), 2.43 (hept, $J = 6.8$ Hz, 1 H), 6.25 (s, 1 H), 7.12-7.38 (m, 5 H); **MS** *m/z* (re1 intensity) 174 (38), 159 (16), δ 1.90 (t, $J = 7.5$ Hz, 3 H), 2.49 (q, $J = 7.5$ Hz, 2 H), 5.18 (d, $J = 10$ Hz, 1 H), 5.35 (d, $J = 18$ Hz, 1 H), 6.42 (s, 1 H), 6.49 (dd, $J = 18$ Hz, 1 H), 7.20-7.40 (m, 5 H); MS m/z (rel intensity) 188 (6), 174 (7), 159 (20), 145 (14), 129 (100), 105 (40), 91 (31). 145 (100), 131 (25), 117 (43). 3c: ¹H NMR (CDCl₃, 250 MHz)

In a similar manner, treatment of IC **(500** mg, 2.1 mmol) with MeMgI (5.0 mL 2 M solution in ether, 10.0 mmol) and $NiCl₂$ -(PPhJz *(80* mg, 0.1 mmol) in benzene (8 mL) afforded 2c (82 mg, 22%) and 3c (145 mg, 49%).

3-Methyl-l-(4-methylphenyl)-l-butene (2d). Following the general procedure, Id (350 mg, 1.35 mmol) was treated with MeMgI (3.0 mL 2 M solution in ether, 6.0 mmol) and NiCl₂(dppe) (25 mg, 0.05 mmol) in benzene to give $2d^{18}$ (246 mg, 98%): ¹H NMR (CDCl₃, 250 MHz) δ 1.08 (d₁ $J = 6.7$ Hz, 6 H₁, 2.31 (s₁ 3 H), 2.40-2.47 (m, 1 H), 6.12 (dd, $J = 16$, 6.7 Hz, 1 H), 6.30 (d, $J = 16$ Hz, 1 H), 7.08 (d, $J = 8.2$ Hz, 2 H), 7.32 (d, $J = 8.2$ Hz, 2 H); MS m/z (rel intensity) 160 (31), 145 (100), 128 (18), 105 $(30), 91(14)$

3-Methyl-1-(2-methoxyphenyl)-1-butene (2g) and 1-(2-Methoxypheny1)butadiene (3g). Following the general procedure, Ig **(500** mg, 2.1 mmol) was treated with MeMgI (5.0 mL $2 M$ solution in ether, 10.0 mmol) and NiCl₂(dppe) (38.6 mg, 0.07 mmol) in benzene (8 mL) to give 2g (324 mg, 88%) and 3g¹⁹ (trace amount). 2g: ¹H NMR (CDCl₃, 250 MHz) δ 1.05 (d, $\bar{J} = 7$ Hz, 6 H), 2.50 (m, 1 H), 3.80 (s, 3 H), 6.18 (dd, $J = 16, 6.8$ Hz, 1 H), 6.68 (d, $J = 16$ Hz, 1 H), 6.81 (d, $J = 8.2$ Hz, 1 H), 6.90 (t, $J = 8.2$ Hz, 1 H); 7.41 (d, $J = 8.2$ Hz, 1 H); MS m/z (rel intensity) 176 (50), 161 (100), 145 (12), 121 (28); HRMS calcd for $C_{12}H_{16}O$ 176.1201, found 176.1201.

3-Methyl-l-(3-methoxyphenyI)-l-butene (2e). Following the general procedure, 1e (270 mg, 1.1 mmol) was treated with MeMgI $(3 \text{ mL } 2 \text{ M}$ solution in ether, 6.0 mmol) and NiCl₂(dppe) (38.6) mg, 0.07 mmol) in benzene (8 mL) to give $2e^{20}$ (190 mg, 95%): **(m,** 1 H), 3.79 (s,3 H), 6.18 (dd, J = 16,6.4 Hz, 1 H), 6.31 (d, J = 16 Hz, 1 H), 6.75 (d, J = 8 Hz, 1 H), 6.88 *(8,* 1 H), 6.94 (d, J = 8 Hz, 1 H), 7.20 (t, J = 8 Hz, 1 H). ¹H NMR (CDCl₃, 250 MHz) δ 1.08 (d, $J = 6.8$ Hz, 6 H), 2.40-2.49

3-Methyl-l-(2-naphthyl)-l-butene (21). Following the general procedure, If (300 mg, 1.2 mmol) was treated with MeMgI (4 mL 2 M solution in ether, 8.0 mmol) and NiCl₂(dppe) (38.6 mg, 0.07 mmol) in benzene to form $2f^{21}$ (216 mg, 95%): ¹H NMR (CDCL₃, 250 MHz) **6** 1.18 (d, J = 6.8 Hz, 6 H), 2.55-2.64 (m, 1 H), 6.21 (dd, J = 16,6.5 Hz, 1 **H),** 7.07 (d, J = 16 Hz, 1 H), 7.36-7.60 **(m,** ⁴**HI,** 7.72 (d, J = 8 **Hz,** 1 H), 7.81 (d, J = 8 Hz, **1** H), 8.14 (d, $J = 8$ Hz, 1 H).

2-Methyl-4-phenyl-2-pentene (7a). Following the general procedure, 6a (274 mg, 1.02 mmol) was treated with MeMgI (2 mL of a 2.5 M solution in ether, 5.0 mmol) and $NiCl₂(dppe)$ (30 mg, 0.06 mmol) in refluxing benzene (10 mL) for 16 h to give 7a

(121 mg, 74%): ¹H NMR (CDCl₃, 200 MHz) δ 1.31 (d, $J = 8.7$ Hz, 3 H), 1.67 (d, $J = 1.2$ Hz, 3 H), 1.70 (s, 3 H), 3.66 (dq, $J =$ $8.7, 6.0$ Hz, 1 H), 5.62 (d, $J = 6$ Hz, 1 H), 7.12-7.33 (m, 5 H); ¹³C **NMR 6 17.9,22.4,25.8,38.1,125.7,126.8,128.3,130.1,130.5,147.3;** MS m/z (rel intensity) 160 (39), 145 (100), 130 (11), 117 (33), 105 (16), 91 (20), 77 (11); HRMS calcd for $C_{12}H_{16}$ 160.1252, found 160.1247.

4-(2-Methoxyphenyl)-2-methyl3-pentene (7b). Following the general procedure, 6b (304 mg, 1.02 mmol) was allowed *to* react with MeMgI $(2.5 \text{ mL of a } 2.5 \text{ M solution}, 6.3 \text{ mmol})$ and $\text{NiCl}_2(\text{dpppe})$ (54 mg, 0.1 mmol) in refluxing benzene (10 mL) for 16 h to give 7b (144 mg, 67%): IR (neat) 2964,2925,1599, 1490, 1453, 1438, 1243, 1051, 1035, 755 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) **6** 1.24 (d, J = 7 Hz, 3 H), 1.64 **(s,** 3 H), 1.68 **(s,** 3 H), 3.81 (s, 3 H), 4.06 (dq, $J = 9, 7$ Hz, 1 H), 5.29 (d, $J = 9$ Hz, 1 H), 6.58-6.94 (m, 2 H), 7.10-7.24 (m, 2 H); ¹³C NMR δ 17.9, 21.8, 25.8, 31.3, 55.4, 110.6, 120.6, 126.5, 127.1, 129.8, 130.5, 135.8, 156.6; MS *m/z* (re1 intensity) 190 (62), 175 (loo), 160 (32), 159 (47), 145 (22), 105 (36),91(56), 77 (37); HRMS **calcd** for **C1\$Il8O** 190.1357, found 190.1353.

4-(4-Methoxyphenyl)-2-methyl-2-pentene (7c). Following the general procedure, 6c (98 mg, 0.33 mmol) was allowed to react with MeMgI (1.0 mL of a 2.5 M solution, 2.5 mmol) and $NiCl₂$ -(dppe) (18 mg, 0.03 mmol) in refluxing benzene (10 mL) for 16 h to give 7c (34 mg, *54%):* IR 2964,1611,1510,1452,1247,1080, 1042,832 cm-'; **'H** NMR (CDCl,, 200 MHz) **6** 1.27 (d, J ⁼7 Hz, 3 H), 1.67 (d, J = 1.3 Hz, 3 H), 1.70 (d, J = 1.3 Hz, 3 H), 3.81 (s, 3 H), 3.61 (dq, $J = 9.4$, 7 Hz, 1 H), 5.24 (d, $J = 9.4$ Hz, 1 H), 6.81 6.83 (d, $J = 9$ Hz, 2 H), 7.15 (d, $J = 9$ Hz, 2 H); ¹³C NMR δ 17.9, 22.5, 25.8, 37.2,55.2, 113.7, 127.7, 130.1, 130.4, 139.4, 157.6; MS *m/z* (re1 intensity) 190 (25), 175 (loo), 160 (9), 145 (6), 135 (25), 91 (11), 57 (24); HRMS calcd for $C_{13}H_{18}O$ 190.1357, found 190.1355.

2-Methyl-4-(4-methylphenyl)-2-pentene (7d). Following the general procedure, 6d (149 mg, 0.53 mmol) was allowed **to** react with MeMgI (2.0 mL of a 1.5 M solution, 3.0 mmol) and $NiCl₂$ -(dppe) (45 mg, 0.09 mmol) in refluxing benzene (10 mL) for 16 h to give 7d (58 mg, 63%): IR 2961,2920,1507,1445,1372,1244, 815 em-'; 'H NMR (CDCl,, 200 MHz) **6** 1.28 (d, J ⁼7 Hz, 3 H), 1.67 (d, $J = 1.0$ Hz, 3 H), 1.69 (d, $J = 1.0$ Hz, 3 H), 2.31 (s, 3 H), 3.62 (dq, J = 9.3, 7 Hz, 1 H), 5.23 (d, J = 9.3 Hz, 1 H), 7.11 **(s,** 4 H); I3C NMR 6 17.9, 21.0, 22.5, 25.8, 37.7, 126.7, 129.0, 130.2, 130.4, 135.1, 144.3; MS *m/z* (re1 intensity) 174 (26), 159 (loo), 144 (8), 129 (11), 115 (22), 105 (8), 73 (41); HRMS calcd for C₁₃H₁₈ 174.1408, found 174.1393.

2-Methyl-4-(2-naphthyl)-2-pentene (7e). Following the general procedure, *6e* (160 mg, 0.51 mmol) was allowed *to* react with MeMgI (2.0 mL of a 1.5 M solution, 3.0 mmol) and NiCl₂-(dppe) (39 mg, 0.07 mmol) in refluxing benzene (10 mL) for 16 h to give 7e (62 mg, 59%): IR 2965, 2925, 1600, 1451, 1378, 1059, 858, 821, 749 cm⁻¹; ¹H NMR (CDCl₃₁ 200 MHz) δ 1.39 (d, J = 7 Hz, 3 H), 1.73 *(8,* 6 H), 3.82 (m, 1 H), 5.36 (d, J = 7 Hz, 1 H), 7.36-7.48 (m, 3 H), 7.64 (s, 1 H), 7.75-7.81 (m, 3 H); ¹³C NMR 6 18.0, 22.4, 25.6,38.3,124.5, 125.1, **125.8,126.2,127.5,127.6,127.9,** 130.0, 130.9, 133.7, 144.8; MS *m/z* (re1 intensity) 210 (56), 195 (100), 180 (15), 165 (16), 153 (13); HRMS calcd for C₁₆H₁₈ 210.1408, found 210.1407.

2,3-Dimethyl-4-phenyI-2-pentene (7f) and 2,3,3-Trimethyl-1-phenyl-1-butene **(Sf).** Following the general procedure, 6f (288 mg, 1.02 mmol) was allowed to react with MeMgI (3.0 **mL** of a 2.0 M solution, 6.0 mmol) and NiCl₂(dppe) (27 mg, 0.05 mmol) in refluxing benzene (10 mL) for 16 h to give a 72:28 mixture of 7f and **8f** (84 mg, 51%). Attempts to separate these two isomers were unsuccessful. The mixture showed the following data: 'H 3 H, 70, 1.38 *(8,* 3 H, **80,** 1.77 *(8,* 3 H, 70, 1.83 (s,3 H, 70, 4.14 **(q,** J = 6.3 Hz, 1 H, 70, 6.36 *(8,* 1 H, 80, 7.11-7.37 (m, **5** H); MS *m/z* (re1 intensity) 174 (36), 159 **(96),** 145 (25), 131 (28), 117 (loo), 105 (54), 91 (43), 77 (23); HRMS calcd for $C_{13}H_{18}$ 174.1408, found 174.1391. NMR (CDCl₃, 200 MHz) δ 1.17 (s, 9 H, 8f), 1.33 (d, \bar{J} = 6.3 Hz,

3-Ethyl-2-methyl-4-phenyl-2-pentene (7g) and 2-Ethyl-3,3-dimet hyl- 1-phenyl- 1 -butene **(8g).** Following the general procedure, 6g (350 mg, 1.18 mmol) was allowed to react with MeMgI $(2.0 \text{ mL of a } 2.5 \text{ M solution}, 5.0 \text{ mmol})$ and $\text{NiCl}_2(\text{dppe})$ (59 mg, 0.11 mmol) in refluxing benzene (10 mL) for 16 h to give a 58:42 mixture of 7g and **8g** (143 mg, 65%). **By** employing

⁽¹⁶⁾ **Klein,** J.; **Medlik-Balan, A.; Meyer, A. Y.; Chorev, M.** *Tetrahe dron* 1976, *32,* 1839.

⁽¹⁷⁾ **Alder,** K.; **Haydn,. J.; Heimbach, K.; Neufang, K.; Haneen, C.;** (18) **Kunckell, F.; Stahe, K. A.** *Chem. Ber.* 1904,37, 1087. **Cerhard, W.** *Justus Liebigs Ann. Chem.* 1354,586,110.

⁽¹⁹⁾ Rudckell, F., Stane, R. A. Chem. Ber. 1904, 37, 1087.
(19) Radcliff, M. M.; Weber, W. P. J. Org. Chem. 1977, 42, 297.
(20) Russ, A. D.; Waren, S. J. Chem. Soc., Perkin Trans. I 1985, 2307.
(21) Zheglova, T. P.; Erivan *Mork. Uniu. Khim.* 1970,11, 639; *Chem. Abstr.* 1971, 74, **31668.**

preparative **GC (&ft SE30** column), *8g* was obtained in pure form: ^H**NMR** (CDC18, 200 MHz) **6** 0.98 (t, J ⁼7.5 Hz, 3 H), 1.17 **(8,** 9 H), 2.30 (9, J = **7.5** Hz, 2 H), 6.36 **(e,** 1 H,), 7.13-7.35 (m, 5 H); **NMR 6 15.1,21.0,29.7,37.3,122.4,125.7,128.6;** HRMS calcd for C14Hm 188.1565, found 188.1556. **7s** 'H NMR (CDCl,, 200 MHz) **6** 0.70 (t, *J* = 7.5 Hz, 3 H), 1.36 (d, *J* = 7 Hz, 3 H), 1.71 **(e, 3 H),** 1.81 **(e, 3 H),** 1.85 **(q, J** = 7.5 **Hz, 2 H)**, 4.12 **(q, J** = 7 \overline{Hz} , 1 H), 7.12-7.31 (m, 5 H); ¹³C NMR δ 14.5, 17.5, 20.3, 20.8, 21.7, 40.3, 124.8, 125.5, 127.5, 127.9, 137.7, 145.6.

Isolation of Intermedate 1Oa from the Reaction of 6a with MeMgI. Following the general procedure, a mixture of **6a** (268 mg, 1.0 mmol), MeMgI (10 mL of a 0.5 M solution, 5.0 mmol), and NiCl₂(dppe) (33 mg, 0.06 mmol) in benzene (10 mL) was refluxed for 10 min, cooled to room temperature, and quenched with a saturated NH₄Cl solution (10 mL) . The organic layer was separated and the aqueoua solution was extracted with ether *(50* mL). The combined organic portions were washed with 10% NaOH $(2 \times 20 \text{ mL})$ and water $(2 \times 20 \text{ mL})$, dried $(MgSO₄)$, evaporated in vacuo to give a residue, which **was** chromatographed on *silica* gel (hexane) to **afford** 1Oa *(80 mg* **34%), 912** (62 *mg,* 23%), and the starting material **6a** (112 mg, 42%). **loa:** 'H NMR (CDCls, 200 **MHz)** 6 1.34 (d, J ⁼7.0 Hz, 3 H), 2.08-2.20 (m, 2 H), 2.79-2.90 (m, 4 H), 4.04 (dq, $J = 7.0$, 9.5 Hz, 1 H), 6.05 (d, $J =$ 9.5 Hz, 1 H), 7.10-7.30 (m, 5 H); '% NMR **6** 21.3, 25.1,29.6, 30.2, **39.3,125.3,126.1,126.9,128.4,138.3,145.2;** MS *m/z* (re1 intensity) 236 (84), 221 (100), 161 (38), 147 (35), 105 (12); HRMS calcd for $C_{12}H_{16}S$ 236.0693, found 236.0705.

&Phenylpentane (16a). Following the general procedure, a benzene solution (8 mL) of **12a** (182 mg, 1.0 mmol), EtMgBr (4.0 mL of a 2.0 M solution, 8 mmol), and $\text{NiCl}_2(\text{dppe})$ 26.4 mg, 0.05 mmol) was refluxed for 16 h to give $16a^{22}$ (77 mg, 52%): ¹H NMR (CDCl₃, 200 MHz) δ 0.77 (t, $J = 7$ Hz, 6 H), 1.43-1.76 (m, 4 H), 2.21-2.30 (m, 1 H), 7.10-7.32 (m, 5 H).

3-(4-Methylphenyl)pentane (16b). Following the general procedure, a benzene aolution (8 mL) of **12b** (197 mg, 1.0 mmol), EtMgBr (4.0 mL of a 2.0 M solution, 8 mmol), and $\text{NiCl}_2(\text{dppe})$ (26.4 mg, 0.05 mmol) was refluxed for 16 h to give 16b²³ (84 mg, 52%): ¹H NMR (CDCl₃, 200 MHz) δ 0.76 (t, J = 7.4 Hz, 6 H), 1.43-1.77 (m, 4 H), 2.20-2.39 (m, 4 H including a singlet at 2.38), **7.01** (d, J ⁼8 **Hz,** 2 H), 7.10 (d, J = 8 Hz, 2 H).

34 l-Naphthy1)pentane (1612) and 1-(l-Naphthy1)propene (17). Following *the* general procedure, a benzene solution (8 mL) of **12d (232** mg, 1.0 mmol), EtMgBr (4.0 mL of a 2.0 M solution, 8 mmol), and NiCl₂(dppe) (26.4 mg, 0.05 mmol) was refluxed for 16 h to give a 4:l ratio mixture of **16c** and **17u** (156 mg). The **two compounds** were separated by preparative **GC. 16c.** 'H **NMR** (CDCl₃, 200 MHz) δ 0.82 (t, J = 7.4 Hz, 6 H), 1.66-1.93 (m, 4 H), 3.28-3.45 (br q, $J = 6$ Hz, 1 H), 7.35 (d, $J = 8$ Hz, 1 H), 7.40-7.55 (m, 3 **HI,** 7.67 (d, J = 8 **Hz,** 1 **HI,** 7.85 **(d,** J = 8 Hz, 1 H), 8.13 (d, J = 8 Hz); MS *m/z* (re1 intensity) 198 (62), 169 (loo), 141 (19); **HRMS calcd for** $C_{15}H_{18}$ **190.1408, found 190.1405.**

-
- (22) Podall, H.; Foster, W. E. J. Org. Chem. 1958, 23, 401.
(23) Schlatter, M. J.; Clark, R. D. J. Am. Chem. Soc. 1953, 75, 361.
(24) Boudjouk, P.; Lin, S. J. Organomet. Chem. 1978, 155, C13.
-

9,9-Diethylfluorene (20). Following the general procedure, a benzene solution (8 **mL)** of **19** (256 *mg,* 1.0 mmol), EtMgBr (4.0 mL of a 2.0 M solution, 8 mmol), and NiC12(dppe) (26.4 *mg,* 0.05 mmol) was refluxed for 16 h to give 20^{25} (140 mg, 69%): ¹H NMR (CDCl,, 200 **MHz) 6** 0.90 (t, J ⁼**7.4** Hz, 6 H), 1.96 **(9,** J ⁼7.4 Hz, 4 H), $7.26 - 7.36$ (m, 4 H), $7.60 - 7.75$ (m, 4 H).

2-Isopropylaniline (15a). Following the general procedure, the reaction of $14a^{26}$ (211 mg, 1.0 mmol), MeMgI (4.0 mL of a 2 M solution in ether, 8 mmol), and $\text{NiCl}_2(\text{dppe})$ (26.4 mg, 0.05 mmol) in THF (12 mL) gave **15a"** (93 mg, 69%): 'H NMR (CDCl₃, 200 MHz) δ 1.25 (d, J = 6.8 Hz, 6 H), 2.88 (hept, J = 6.8) Hz, 1 **H),** 3.45 **(bs,** 2 H), 6.58-7.15 (m, 3 H).

4-Chloro-2-isopropylaniline (15b). Following the general procedure, the reaction of $14b^{26}$ (246 mg, 1.0 mmol), MeMgI (4.0) mL of a 2 M solution in ether 8 mmol), and $\text{NiCl}_2(\text{dppe})$ (26.4 mg, 0.05 mmol) in THF (12 mL) gave **15b** (105 mg, 62%)? 'H NMR (CDCl₃, 200 MHz) δ 1.22 (d, J = 6.8 Hz, 6 H), 2.83 (hept, $J = 6.8$ Hz, 1 H), 3.60 (bs, 2 H), 6.56–7.07 (m, 3 H).

4-Aminostyrene (13). Following the general procedure, the reaction of **12** *(Ar* = 4-aminophenyl, 211 mg, 1.0 mmol), MeMgI $(4.0 \text{ mL of a } 2 \text{ M solution in ether, } 8 \text{ mmol})$, and NiCl₂(dppe) (26.4 mJ) mg, 0.05 mmol) in THF (12 mL) gave **13** (Ar = 4-aminophenyl, 71 mg, *60%)?* 'H NMR (CDCl,, 200 **MHz)** 6 3.69 **(bs,** 2 H), 5.05 (d, J = 10.9 Hz, 1 H), 5.65 (d, J = 17.5 Hz, 1 H), 6.55-6.69 (m, 3 H), 7.24 (d, $J = 6.6$ Hz, 2 H).

Acknowledgment. This **work was** supported **by** the National Science Council of the Republic of China and the Croucher Foundation of Hong Kong.

Registry No. la, 5616-58-0; **lb,** 119925-03-0; **IC,** 119925-04-1; 1d, 119924-99-1; le, 119925-00-7; 1f, 119925-01-8; 1g, 119925-02-9; **2a,** 1608-28-2; **2b,** 36939-20-5; **2c,** 61777-12-6; **2d,** 32094-37-4; **2e,** 119925-09-6; **3g,** 60573-56-0; **6a,** 130573-250; **6b,** 135042-80-7; **6c, 6g,** 135042-84-1; **7a,** 50704-01-3; **7b,** 135042-75-0; **7c,** 35029-32-4; **7d,** 135042-76-1; **7e,** 135042-77-2; **7f,** 92104-76-2; **7g,** 135042-78-3; **Bf,** 29772-45-0; **8g,** 135042-79-4; 9,135042-85-2; **loa,** 29833-95-2; **12a,** 5616-55-7; **12b,** 23229-29-0; **12d,** 86201-62-9; **12** (Ar = 4 aminophenyl), 94838-73-0; **13,** 1520-21-4; **14a,** 53165-22-3; **14b,** 53165-23-4; **15a,** 643-28-7; **15b,** 76842-14-3; **16a,** 1196-58-3; **16b,** 2294-79-3; NiCl₂(PPh₃)₂, 14264-16-5; MeMgI, 917-64-6; EtMgBr, 925-90-6; $\text{NiCl}_2(\text{dppe})$, 14647-23-5. 11992506-3; **2f,** 135042-74-9; **2g,** 119925-07-4; **3b,** 37580-42-0; **3c,** 135042-81-8; **6d,** 130552-14-6; *6e,* 135042-82-9; **6f,** 135042-83-0; 22975-58-2; **16~,** 3042-56-6; **17,** 22767-77-7; **19,** 7049-31-2; **20,**

Supplementary Material Available: 'H NMR spectra of **2g, 7a-e, 8g,** and **10a** (8 pages). Ordering information is given on any current masthead page.

⁽²⁵⁾ Greenhow, E. J.; McNell, D. J. Chem. Soc. 1956, 3204.

⁽²⁶⁾ Gassman, P. G.; Drewes, H. R. J. *Am. Chem. Soc.* 1974, 96, 3002.
(27) Smolinsky, G. J. *Am. Chem. Soc.* 1974, 96, 3002.
(28) Bartoli, G.; Bosco, M.; Pozzo, R. D.; Petrini, M. *Tetrahedron* 1987,

^{43,} **4221.**

⁽²⁹⁾ Overberger, **C.** G.; Friedman, **H. A.** J. **Org.** *Chem.* **1961,30,1926.**